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TRANSITION BETWEEN ATOMIC STATES AND SEMI-CLASSICAL RADIATION 

THEORY USING QUANTUM PERTURBATION 
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ABSTRACT 

Some phenomena cannot be solved using the exact solution of the Schrödinger 

equation. However, using approximated methods such as perturbation theory we are 

able to obtain remarkable results considering terms up to second order. The physical 

phenomena studied here are the absorption and stimulated emission by the classical 

feature. In addition, we are going to discuss the physical meaning of perturbation 

theory when we treat the behaviour how initial state ket evolves as time goes on. We 

will evaluate the transition of probability between states, the rate and the energy 

involved in the atomic transitions. It will be introduced fundamental concepts of 

quantum mechanics, such as interaction picture, and a general perturbation theory 

using constant and sinusoidal time-dependent perturbation term. Concerning to these 

phenomena, we considered the perturbed term of the Hamiltonian of the interaction 

between the vector potential and electron momentum. 

Keywords: Quantum Mechanics. Perturbation Theory. Photoelectric Effect. 

INTRODUCTION 

In the state-of-the-art of scientific knowledge, quantum mechanics is the last 

great theory that describes satisfactory the natural phenomena in a very small scale 

(COHEN-TANNOUGJI, et al., 1977)]. In this work, the concepts of quantum mechanics 

will be carried on in order to describe some phenomena of classical radiation 

interaction with matter. Moreover, to describe such phenomena, it is required to 

advance further with approximation methods, such as time-dependent perturbation 
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theory.  Basic quantum concepts of perturbation theory will be described using the 

time-dependent potential and interaction picture. The two-state level problem is 

described in detail using the exact solution of Schrödinger equation. Concerning about 

the time-dependent perturbation theory, which the most problems faced in nature have 

no exact solution, we will apply the approximation method to solve absorption and 

stimulated emission. It is worthy to notice that the phenomena such as the photoelectric 

effect and the energy shift and decay width can be explained using quantum 

perturbation theory. 

 

DEVELOPMENT  

1 TIME-DEPENDENT POTENTIALS 

In contrast with the quantum static, in which the potential is time-independent, 

many problems in nature of importance considerably hold potential that are dependent 

of time. Generally, the Hamiltonian can be partitioned in two terms; one containing time 

explicitly as follows Ĥ = Ĥ0 + V̂(𝑡)1 If we consider the system initially populated at one 

of eigenstates of the Hamiltonian, for instance |𝑖⟩, the system will develop and, due to 

time-dependent potential, can undergo transitions to states other than |𝑖⟩, i.e., 𝑛 ≠ 𝑖. In 

this way, suppose that the physical system is, at 𝑡 = 0, in an arbitrary state, in which 

can be described as a superposition of eigenkets of the Hamiltonian, such as 

|𝜑; 𝑡 = 0⟩ = |𝜑⟩ = ∑ 𝑐𝑛(0)
𝑛

|𝑛⟩. (1)1 

With the progress of time, the physical state develops and its dynamic is 

described by time evolution operator (Sakurai, 1994). Applying this temporal operator 

in Equation (1) and using the Schrödinger equation for the stationary case, we get 

|𝜑; 𝑡⟩ = ∑ 𝑐𝑛(𝑡)
𝑛

𝑒−
𝑖
ℏ

E𝑛𝑡|𝑛⟩. (2)2 

                                                           
1 It is important to notice that at 𝑡 = 0, in the Schrödinger picture, the basis kets does not change as time evolves. 

Thus, in order to investigate the dynamic of physical state, the calculation of coefficients it substantially important 

for this work. 

2 The time evolution operator in the Schrödinger picture is given by 𝐔(𝑡) = 𝑒−
𝑖

ℏ
𝐇𝑡

, where ℏ is the reduced Planck 

constant and 𝐇 is the Hamiltonian of the physical system. 
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The time-evolution of the coefficients, as we can observe in the above equation, 

depends only on the time-dependent potential.1 The probability of finding the system 

in an eigenstate |𝑛⟩ is proportional to |𝑐𝑛(𝑡)|2. Clearly, we easily verify that the 

probability changes according to the value of the potential in the Hamiltonian. 

 

2 THE INTERACTION PICTURE 

To solve problems using the perturbation theory, it is required introduce another 

concept relevant and useful, which is the Interaction Picture.2 The time evolution of a 

given state ket in the Schrödinger Picture was described in the Equation (2), in which 

will be represented by the subscript S for Schrödinger Picture and I for the Interaction 

Picture.  

Defining |𝜑, 𝑡0; 𝑡⟩
𝐼

= 𝑒𝑖𝐇0𝑡/ℏ|𝜑, 𝑡0; 𝑡⟩
𝑆
 as the change of the state described from one 

picture to another and multiplying 𝑖ℏ
𝜕

𝜕𝑡
 taking use of the Schrödinger equation, we 

obtain 

𝑖ℏ
𝜕

𝜕𝑡
|𝜑, 𝑡0; 𝑡⟩

𝐼
= 𝐕𝐼|𝜑, 𝑡0; 𝑡⟩

𝐼
 (3)3 

Also, 𝑽𝐼 stands for the potential and this equation is so-called Schrödinger-like 

equation in Interaction Picture. 4 Claiming for the Heisenberg-like equation in 

interaction picture, by which describes the dynamic of the observables, it is necessary 

to consider the change of basis of observables, between Schrödinger and Interaction 

Pictures obtained through the evaluation of the Equation (3), i.e.,  

𝑨𝐼 = 𝑒
𝑖𝐇𝟎𝑡

ℏ  𝑨𝑆 𝑒
−𝑖𝐇0𝑡

ℏ . (4) 

Differentiating with respect to time, we obtain the Heisenberg-like equation 

�̇�𝐼 = −
𝑖

ℏ
[𝐀𝐼 , 𝐇0] (5) 

                                                           
1 Even if the time-dependent potential is absent, the exponential term is present. This can assure that the evolution 

of the coefficients are exclusively dependent on the potential. 
2 To read more about Interaction Picture and the differences among others, such as Schrödinger and Heisenberg 

Picture, please, go to reference (SAKURAI, 1994). 
3 All quantum operators will be represented by bold characters instead of using a caret. 
4 This equation is quite similar to the Schrödinger equation in the Schrödinger Picture, but instead of 𝐇, the 

equation replaced by 𝐕𝐼, being so-called Schrödinger-like equation. 
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where we have used the �̇�𝑆 = 0 in Schrödinger picture. Describing a physical system 

by an arbitrary state ket in interaction picture, using the same energy eigenkets basis 

|𝑛⟩, follows 

|𝜑, 𝑡0 = 0; 𝑡⟩
𝐼

= ∑ 𝑐𝑛(𝑡)
𝑛

|𝑛⟩. (6) 

The main idea is to determine the expansion coefficients of (6) in order to 

evaluate the probability of finding the physical system in any of the energy eigenstates 

|𝑛⟩. Using the Schrödinger-like equation obtained in Equation (3) and recognizing that 

𝑐𝑛(𝑡) = ⟨𝑛|𝜑, 𝑡0; 𝑡⟩
𝐼
, it follows 

𝑖ℏ�̇�𝑛(𝑡) = ⟨𝑛|𝑒𝑖𝐇0𝑡/ℏ 𝐕 𝑒−𝑖𝐇0𝑡/ℏ |𝜑, 𝑡0; 𝑡⟩
𝐼
 (7) 

where we have used Equation (4). Inserting the unit operator in Equation (7), we obtain 

𝑖ℏ�̇�𝑛(𝑡) = ∑ 𝑒𝑖(E𝑛−E𝑚)𝑡/ℏ⟨𝑛| 𝐕 |𝑚⟩⟨𝑚|𝜑, 𝑡0; 𝑡⟩
𝐼

𝑚
 (8) 

Using the definition of characteristic angular frequency between two states, i.e., 

𝜔𝑛𝑚 = (E𝑛 − E𝑚)/ℏ, defining the matrix element ⟨𝑛| 𝑉 |𝑚⟩ as 𝑉𝑛𝑚 and 𝑐𝑚(𝑡) =

⟨𝑚|𝜑, 𝑡0; 𝑡⟩
𝐼
, we finally get 

𝑖ℏ�̇�𝑛(𝑡) = ∑ 𝑒𝑖𝜔𝑛𝑚𝑡𝐕𝑛𝑚𝑐𝑚(𝑡)
𝑚

. (9) 

The Equation (9) is the coupled differential equation for the expansion 

coefficients. Therefore, to evaluate the probability of finding the physical system in any 

energy eigenstate is necessary to solve it.  

3 TWO-SYSTEM PROBLEM 

 

Most problems in nature cannot be solved with exact solutions, it is necessary 

to use approximation methods as perturbation that we are going to develop in this 

work. However, it is important and relevant described herein the two-system level 

problem in order to solve the differential equation obtained in Equation (9) for a given 

time-dependent potential. Consider a Hamiltonian and a time-dependent potential for 

such physical system as follows 

𝐇0 = E1|1⟩⟨1| + E2|2⟩⟨2| (10) 

𝐕(𝑡) = 𝜁(𝑒𝑖𝜔𝑡|1⟩⟨2| + 𝑒−𝑖𝜔𝑡|2⟩⟨1|) (11) 
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where we have that for 𝜁, 𝜔 > 0 and real. It is very clear to observe that time-dependent 

potential connects one state to another, undergoing a transition. The potential 

described before is purely off diagonal and it is possible to replace it in Equation (9). If 

the physical system is supposed to occupy initially the lower state, then the probability 

to find the system in the upper state is given by the Rabi’s Formula1 (PULICI, 2006), 

|𝑐2(𝑡)|2 = (𝜁/ℏ)2
1

Ω2/4 + 𝜁2/ℏ2
sin2 (√Ω2/4 + 𝜁2/ℏ2𝑡). (12) 

The probability oscillates in time with an angular frequency Ω̃ = √Ω2/4 + 𝜁2/ℏ2, 

where Ω = ω − ω12. In the resonance condition2 the amplitude oscillation is very large 

and, consequently, the probability in both of the states are  

|𝑐2(𝑡)|2 = sin2(𝜁𝑡/ℏ) (13) 

|𝑐1(𝑡)|2 = 1 − |𝑐2(𝑡)|2 = 1 − sin2 (
𝜁𝑡

ℏ
) = cos2 (

𝜁𝑡

ℏ
). (14) 

As we can notice, the system has all its energy entirely in the lower state. From 

0 to 𝜋ℏ/2𝜁, the state |1⟩ is gradually decreased and its excess of energy is given to the 

state |2⟩, in a process so-called absorption. However, from 𝜋ℏ/2𝜁 to 𝜋ℏ/𝜁, the system 

undergoes a transition from state |2⟩ to |1⟩, in a process called emission, where the its 

excess of energy is emitted and the system restore its initial configuration. These 

processes of absorption and emission are due to the time-dependent potential and we 

can infer that this causes the transition between states. Though we are far away from 

the resonance condition, the system still experiences some transition between states. 

However, the amplitude of the oscillation decreases at half of its maximum when the 

angular frequency of the potential is 

ω = ω12 ± (2𝜁/ℏ). (15) 

Weaker the strength of the time-dependent potential applied in the physical 

system, narrow is the resonance peak of the transition. 

4 TIME-DEPENDENT QUANTUM PERTURBATION THEORY 

 

Whereas in the time-independent case the problem of solving the equation 

                                                           
1 This formula has a great importance on atomic physics and the solution of the differential equation it is not 

demonstrated here. 
2 The resonance condition here is when the angular frequency of the time-dependent potential is near the angular 

frequency characteristic concerning the two states, i.e., ω ≅ ω12 
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𝑖ℏ|�̇�⟩ = 𝐇|𝑛⟩ (16) 

is reduced to solve the eigenvalues of 𝐇, the time-dependent case a frontal attempt on 

the full time-dependent Schrödinger equation becomes unavoidable (SHANKAR, 

1994). Here, we are going to consider the perturbative solution to a class of 

phenomena as  

𝐇(𝑡) = 𝐇0 + 𝐇1(𝑡) (17) 

where 𝐇0 is a time-independent part where the solution is known and 𝐇1 is the 

perturbation term. So far, we have described the transition of probabilities of finding 

the system in a specific energy eigenstate. For a general case, we must solve the 

coupled differential Equation (9) and expand its coefficients as perturbation terms. The 

coefficients 𝑐𝑛(𝑡) can be expanded as 

𝑐𝑛(𝑡) = 𝑐𝑛
0 + 𝑐𝑛

1 + 𝑐𝑛
2 ⋯ (18) 

where the terms of the right side are the related with the amplitudes of non-perturbed 

term, first-order, second-order, and so on. Initially the physical system is populated in 

a specific state |𝑖⟩ at 𝑡 = 𝑡0 and to apply the definition of the Interaction Picture for such 

case, it is convenient to choose a phase factor. Then, we have 

|𝑖, 𝑡0; 𝑡0⟩𝑆 = 𝐔𝑆(𝑡0)|𝑖⟩ = 𝑒−𝑖E𝑖𝑡0/ℏ|𝑖⟩. (19) 

Doing the change of pictures, from Schrödinger to Interaction one, we get  

|𝑖, 𝑡0; 𝑡0⟩𝐼 = 𝑒𝑖𝐇0𝑡|𝑖, 𝑡0; 𝑡0⟩𝑆 = 𝑒−𝑖(E𝑖−E𝑖)𝑡/ℏ|𝑖⟩ = |𝑖⟩ → |𝑖, 𝑡0; 𝑡0⟩𝐼 = |𝑖⟩𝑆. (20) 

At a later time, we must apply the time evolution operator in Equation (20). It 

becomes 

|𝑖, 𝑡0; 𝑡⟩𝐼 = 𝐔𝐼(𝑡, 𝑡0)|𝑖, 𝑡0; 𝑡0⟩𝐼 = 𝐔𝐼(𝑡, 𝑡0)|𝑖⟩. (21) 

The physical state|𝑖, 𝑡0; 𝑡⟩𝐼 can be expanded in terms of energy eigenstates as 

|𝑖, 𝑡0; 𝑡⟩𝐼 = ∑ 𝑐𝑛(𝑡)
𝑛

|𝑛⟩. (22) 

Comparing (21) and (22), we have 

∑ 𝑐𝑛(𝑡)
𝑛

|𝑛⟩ = 𝐔𝐼(𝑡, 𝑡0)|𝑖⟩. (23) 

 From (23) we identify that 

⟨𝑚| (∑ 𝑐𝑛(𝑡)
𝑛

) |𝑛⟩ = ⟨𝑚|𝐔𝐼(𝑡, 𝑡0)|𝑖⟩ ⇒ 𝑐𝑛(𝑡) = ⟨𝑛|𝐔𝐼(𝑡, 𝑡0)|𝑖⟩. (24) 
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The expansion of the coefficients in Equation (9) means expand the transition 

amplitude of time evolution operator in Interaction Picture. Then, from the Schrödinger-

like equation, we have that the evolution of a state ket in the Interaction Picture is given 

by 

𝑖ℏ
𝜕

𝜕𝑡
𝐔𝐼(𝑡, 𝑡0)|𝑖, 𝑡0; 𝑡⟩𝐼 = 𝐇𝐼

1(𝑡)𝐔𝐼(𝑡, 𝑡0)|𝑖⟩ (25)1 

𝑖ℏ
𝜕

𝜕𝑡
𝐔𝐼 = 𝐇𝐼

1(𝑡)𝐔𝐼 . (26) 

Integrating with respect to time, 

∫
𝜕

𝜕𝑡
𝐔𝐼(𝑡′, 𝑡0)𝑑𝑡′

𝑡

𝑡0

= −
𝑖

ℏ
∫ 𝐇𝐼

1(𝑡′)𝐔𝐼(𝑡′, 𝑡0)
𝑡

𝑡0

𝑑𝑡′ (27) 

And solving it, we get 

𝐔𝐼(𝑡, 𝑡0) = 1 −
𝑖

ℏ
∫ 𝐇𝐼

1(𝑡′)𝐔𝐼(𝑡′, 𝑡0)
𝑡

𝑡0

𝑑𝑡′. (28) 

By iteration, we obtain the following approximated solution  

𝐔𝐼(𝑡, 𝑡0) = 1 + (
−𝑖

ℏ
) ∫ 𝐇𝐼

1(𝑡′)𝑑𝑡′
𝑡

𝑡0

+ (
−𝑖

ℏ
)

2

∫ 𝐇𝐼
1(𝑡′)𝑑𝑡′

𝑡

𝑡0

∫ 𝐇𝐼
1(𝑡′′)

𝑡′

𝑡0

𝑑𝑡′′ + ⋯ (29) 

where this equation is known as Dyson Series. Finally, all we need is replace this 

expansion in Equation (23) and find out the transition probabilities between energy 

states, 

𝑐𝑛(𝑡) = ⟨𝑛| [1 + (
−𝑖

ℏ
) ∫ 𝐇𝐼

1(𝑡′)𝑑𝑡′
𝑡

𝑡0

+ (
−𝑖

ℏ
)

2

∫ 𝐇𝐼
1(𝑡′)𝑑𝑡′

𝑡

𝑡0

∫ 𝐇𝐼
1(𝑡′′)

𝑡′

𝑡0

𝑑𝑡′′ + ⋯ ] |𝑖⟩ (30) 

Rearranging the terms and comparing with the expansion of the coefficients 

given in Equation (18) 

𝑐𝑛
(0)

= ⟨𝑛|𝑖⟩ = 𝛿𝑛,𝑖 (31) 

𝑐𝑛
(1)

= (
−𝑖

ℏ
) ∫ 𝑒𝑖𝜔𝑛𝑖𝑡′

𝐇𝑛𝑖
1 (𝑡′)𝑑𝑡′

𝑡

𝑡0

 (32) 

𝑐𝑛
(2)

= (
−𝑖

ℏ
)

2

∑ ∫ ∫ 𝑒𝑖𝜔𝑛𝑚𝑡′
𝐇𝑛𝑚

1 (𝑡′)𝑒𝑖𝜔𝑚𝑖𝑡′′
𝐇𝑚𝑖

1 (𝑡′′)
𝑡′

𝑡0

𝑡

𝑡0

𝑑𝑡′𝑑𝑡′′

𝑚
 (33) 

                                                           
1 The time-dependent potential term was changed by a general perturbation term. 
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where 𝐇𝑛𝑚
1  are the matrix elements of the perturbed term of Hamiltonian in Interaction 

picture and 𝜔𝑛𝑖 = (E𝑛 − E𝑖)/ℏ is the characteristic angular frequency between two 

states of the transition. Finally, the transition of probability from one state |𝑖⟩ → |𝑛⟩ is 

given by 

𝑃𝑖→𝑛(𝑡) = |𝑐𝑛
(1)

+ 𝑐𝑛
(2)

+ ⋯ |
2
 (34) 

 

4.1 Constant Perturbation  

Now we are able to deal with constant perturbation. Regard the perturbation 

term, we hold 

𝐇1(𝑡) = {
0 𝑡 < 0

𝐇1 𝑡 ≥ 0
 (35) 

We can amend in Equation (35) in perturbation coefficients described in 

Equation(31-33), and then we have 

𝑐𝑛
(0)

= 𝛿𝑖𝑛 (36) 

𝑐𝑛
(1)

= (
−𝑖

ℏ
) 𝐇𝑛𝑖

1 ∫ 𝑒𝑖𝜔𝑛𝑖𝑡′
𝑑𝑡′

𝑡

0

 (37) 

𝑐𝑛
(2)

= (
−𝑖

ℏ
)

2

∑ 𝐇𝑛𝑚
1 𝐇𝑚𝑖

1 ∫ 𝑒𝑖𝜔𝑛𝑚𝑡′
𝑑𝑡′ ∫ 𝑒𝑖𝜔𝑚𝑖𝑡′′

𝑡′

0

𝑡

0

𝑑𝑡′′

𝑚
. (38) 

At first, we are going to deal with the first-order term and we obtain after solving 

the integral in Equation (37) 

𝑐𝑛
(1)

=
𝐇𝑛𝑖

1

(E𝑛 − E𝑖)
(1 − 𝑒𝑖𝜔𝑛𝑖𝑡). (39) 

Therefore, the transition of the probability of first-order is given by 

|𝑐𝑛
(1)

|
2

=
4|𝐇𝑛𝑖

1 |
2

(E𝑛 − E𝑖)2 [sin2 (
𝜔𝑛𝑖𝑡

2
)]. (40) 

We can observe that the probability of finding |𝑛⟩ depends not only on |𝑉𝑛𝑖|
2, but 

as well as on difference of energy between two states. Considering that we have many 

states with similar energy of final states |𝑛⟩, i.e., 𝐸 ~ 𝐸𝑛, or 𝜔 ~ 𝜔𝑛, and looking at the 

behaviour of this first-order transition of probability as a function of the angular 

frequency, we have 
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|𝑐𝑛
(1)

|
2

=
4|𝐇𝑛𝑖

1 |
2

𝜔2ℏ2
[sin2(𝜔𝑡/2)] =

|𝐇𝑛𝑖
1 |

2

ℏ2

4[sin2(𝜔𝑡/2)]

𝜔2
. (41) 

The minimum of 4[sin2(𝜔𝑡/2)]/𝜔2 is given by 

𝜔𝑡

2
= 𝑛𝜋 ⟹ 𝜔 =

2𝜋𝑛

𝑡
. (42) 

where 𝑛 = ±1, ±2, ±3, ⋯. Analysing the maximum of this function is given by 

max
𝜔≈0

{
4 [sin2 (

𝜔𝑡
2

)]

𝜔2 } ≅ max
𝜔≈0

{ lim
𝜔→0

4 [sin2 (
𝜔𝑡
2

)]

𝜔2 } = max
𝜔≈0

{ lim
𝜔→0

2 sin
𝜔𝑡
2

cos
𝜔𝑡
2

𝜔
𝑡}

= max
𝜔≈0

{ lim
𝜔→0

sin 𝜔𝑡

𝜔
𝑡} = max

𝜔≈0
{ lim

𝜔→0
cos(𝜔𝑡) 𝑡2} = 𝑡2 

(43) 

We can observe the maximum is proportional to 𝑡2. On the other hand, the 

amplitude of oscillation is reduced at half of its maximum so we can evaluate the full 

width at maximum peak height 

cos(𝜔𝑡) 𝑡2 = 𝑡2/2 → (1 − (𝜔𝑡)2/2)𝑡2 = 𝑡2/2 → |∆𝜔| ∝ 2/𝑡 (44) 

It is important to notice that as time increases, the first-order term of the 

expansion is just appreciable for values where oscillations do not cancel. Then 

𝜔𝑡/2 = 𝜋 → 𝑡 = 2𝜋/|𝜔| = 2𝜋ℏ/|𝐸𝑛 − 𝐸𝑖|  (45) 

If the time interval of the perturbation is given by ∆𝑡 and the energy involved in 

transition is given by ∆E = E𝑛 − E𝑖, we have the following relation 

∆𝑡∆E ~ ℏ (46)1 

As time interval increases in perturbation, narrower the peak energy and 

consequently we have a small amount of energy involved, being enough to cause a 

transition. On the other hand, smaller the time involved, broader is the energy peak 

and, consequently, the amount of energy involved in the transition is bigger. Thus, for 

the appreciable transitions, with energy close to the final states, we have 

|𝑐𝑛
(1)

|
2

=
|𝐇𝑛𝑖

1 |
2

ℏ2

4[sin2(𝜔𝑡/2)]

𝜔2
≅

|𝐇𝑛𝑖
1 |

2

ℏ2
𝑡2. (47) 

The probability of finding the physical system in the state |𝑛⟩ after a time interval 

of perturbation is linearly proportional to the square of the time. There is, generally, a 

group of final states |𝑛⟩ in which possess energy very close to the energy of initial state 

                                                           
1 This equation is known as the energy-time uncertainty relation.  
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|𝑖⟩. Supposing the final states have a continuous spectrum in neighbourhood of the 

initial state, the total transition of probability is given by 

∑ |𝑐𝑛
(1)

|
2

𝑛,𝐸𝑛≅𝐸𝑖

⟹ ∫ 𝑑𝑁𝑛 |𝑐𝑛
(1)

|
2

= ∫ 𝑑E𝑛𝜌(E𝑛) |𝑐𝑛
(1)

|
2
 (48) 

where in case of a discrete summing has been changed by an integral summed over 

the density of states with energy interval between E and E + 𝑑E. Replacing the first-

order perturbation term into (2.2.13),  

∫ 𝑑E𝑛𝜌(E𝑛) |𝑐𝑛
(1)

|
2

= ∫ 𝑑E𝑛𝜌(E𝑛)
4|𝐇𝑛𝑖

1 |
2

|E𝑛 − E𝑖|2
sin2[(E𝑛 − E𝑖)𝑡/2ℏ]. (49) 

 

 

For large time intervals1, the term becomes 

lim
𝑡→∞

1

|E𝑛 − E𝑖|2
sin2[(E𝑛 − E𝑖)𝑡/2ℏ] =

𝜋𝑡

2ℏ
𝛿(𝐸𝑛 − 𝐸𝑖). (50) 

Replacing this result in Equation (49) and solving the integral, we get 

|𝐇𝑛𝑖
1 |̅̅ ̅̅ ̅̅ ̅2

2𝜋𝑡

ℏ
∫ 𝑑E𝑛𝜌(E𝑛) 𝛿(E𝑛 − E𝑖) = |𝐇𝑛𝑖

1 |̅̅ ̅̅ ̅̅ ̅2 (
2𝜋

ℏ
) 𝑡𝜌(𝐸𝑛)|𝐸𝑛≅𝐸𝑖

 (51) 

We can verify that the probability is proportional to the time interval linearly. In 

addition, it is convenient to evaluate the transition rate, i.e., the transition probability 

per unit of time. Then, defining the transition rate as 𝓌𝑖→[𝑛] as the transition probability 

per unit of time from initial state to the group of final states with similar energies, it 

follows 

𝓌𝑖→[𝑛] =
𝑑

𝑑𝑡
( ∑ |𝑐𝑛

(1)
|
2

𝑛,𝐸𝑛≅𝐸𝑖

) =
𝑑

𝑑𝑡
(|𝐇𝑛𝑖

1 |̅̅ ̅̅ ̅̅ ̅2
2𝜋

ℏ
𝑡𝜌(E𝑛)|E𝑛≅E𝑖

). (52) 

Thus, the transition rate is given by 

                                                           
1 For solving this limit, we have used the delta-function definitions, where 𝛿(𝑥) = lim

𝑡→∞

sin 𝑥𝑡

𝜋𝑥
 the fundamental limit 

is given by lim
𝑡→∞

sin 𝑥𝑡

𝑥𝑡
= 0. Calling 𝑥 = (E𝑛 − E𝑖)/2ℏ, we have that 

𝑡

4ℏ2 lim
𝑡→∞

1

|E𝑛−E𝑖|
2

4ℏ2 𝑡

sin2[(E𝑛 − E𝑖)𝑡/2ℏ] =
𝜋𝑡

4ℏ2 𝛿((E𝑛 − E𝑖)/2ℏ). 

Using the relation 𝛿((E𝑛 − E𝑖)/2ℏ) = 2ℏ𝛿(E𝑛 − E𝑖), finally we obtain 
𝜋𝑡

4ℏ2 𝛿((E𝑛 − E𝑖)/2ℏ) =
𝜋𝑡

2ℏ
𝛿(E𝑛 − E𝑖). 
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𝓌𝑖→[𝑛] = |𝐇𝑛𝑖
1 |̅̅ ̅̅ ̅̅ ̅2

2𝜋

ℏ
𝜌(E𝑛)|E𝑛≅E𝑖

. (53) 

On the other hand, the transition rate concerned to the first-order perturbation 

term is time-independent in this regime. Sometimes, this equation can be written 

considering a single final state, 

𝓌𝑖→𝑛 = 𝐇𝑛𝑖
1 2𝜋

ℏ
𝛿(E𝑛 − E𝑖). (54) 

This equation is known as Fermi’s Golden Rule. The term |𝐇𝑛𝑖
1 |̅̅ ̅̅ ̅̅ ̅2 that appears in 

Equation (53) is due to the final states form a quasi-continuum spectrum and they are 

quite similar. Looking at for the second-order perturbation term Equation (38), and 

rearranging the terms of the formula, we get 

𝑐𝑛
(2)

= (
−𝑖

ℏ
) ∑

𝐇𝑛𝑚
1 𝐇𝑚𝑖

1

(E𝑚 − E𝑖)
∫ (𝑒𝑖𝜔𝑛𝑚𝑡′

− 𝑒𝑖𝜔𝑛𝑖𝑡′
)𝑑𝑡′

𝑡

0𝑚
 (55) 

where 𝜔𝑛𝑚 + 𝜔𝑚𝑖 =
1

ℏ
(𝐸𝑛 − 𝐸𝑖) = 𝜔𝑛𝑖. The second term in the above integral will lead to 

the same time-dependence of the first-order perturbation term. By deduction, using the 

equivalent argument adopted before, the only contribution comes from those energies 

of final states similar to energy of initial state. Moreover, when the energy of the states 

|𝑚⟩ differ from |𝑛⟩ and |𝑖⟩, this term contributes for the transition of probability and 

increases linearly with time as well. Thereby,  

𝓌𝑖→[𝑛] =
2𝜋

ℏ
|𝐇𝑛𝑖

1 + ∑
𝐇𝑛𝑚

1 𝐇𝑚𝑖
1

(𝐸𝑚 − 𝐸𝑖)
𝑚

|

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2

𝜌(E𝑛)|E𝑛≅E𝑖
. (56) 

The transition occurred due the second-order can be described as a transition 

of two steps. The first one the system undergoes a transition from the initial state |𝑖⟩ to 

|𝑚⟩ and subsequently to another state |𝑛⟩. These intermediary states are called of 

virtual states and they require no conservation of energy in the virtual transitions. 

4.2  Harmonic Perturbation  

Consider now another kind of perturbation, with the term given by  

𝐇1(𝑡) = 𝐇1𝑒𝑖𝜔𝑡 + 𝐇1†
𝑒−𝑖𝜔𝑡 (57) 

where the operator 𝐇1depends on the space and momentum as well. Taking the same 

initial conditions treated in the previous section of constant perturbation and replacing 

the perturbation term in Equation (50), we have 
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𝑐𝑛
(1)

= (
−𝑖

ℏ
) [𝐇𝑛𝑖

1 ∫ 𝑒𝑖(𝜔+𝜔𝑛𝑖)𝑡′
𝑑𝑡′

𝑡

𝑡0

+ 𝐇𝑛𝑖
1† ∫ 𝑒𝑖(−𝜔+𝜔𝑛𝑖)𝑡′

𝑑𝑡′
𝑡

𝑡0

] (58) 

We can compare it with the constant perturbation and we are able to notice that 

for appreciable transitions in harmonic perturbation, the condition is given by 

𝜔𝑛𝑖 ± 𝜔 ≅ 0 ⇒
(E𝑛 − E𝑖)

ℏ
 ± 𝜔 ≅ 0 ⇒ E𝑛 ≅ E𝑖 ∓ ℏ𝜔. (59) 

There is no conservation of energy in the harmonic perturbation satisfied by the 

quantum system alone. The compensation comes from the perturbation part, where in 

case of absorption process the system receives ℏ𝜔 of energy from the perturbation 

term and in the case of emission, the quantum system gives up the excess of ℏ𝜔 to 

the perturbation term. Thus, the transition rates for stimulated emission and absorption 

processes are given by1 

𝓌𝑖→[𝑛] =
2𝜋

ℏ
|𝐇𝑛𝑖

1 |̅̅ ̅̅ ̅̅ ̅2𝜌(E𝑛)|E𝑛≅E𝑖−ℏ𝜔 (60) 

𝓌𝑖→[𝑛] =
2𝜋

ℏ
|𝐇𝑛𝑖

1†|
̅̅ ̅̅ ̅̅ ̅2

𝜌(E𝑛)|E𝑛≅E𝑖+ℏ𝜔 (61) 

For summarizing, the constant perturbation has demonstrated that just in case 

where the energy of the group of final states are near of the energy of the initial states 

that we obtain appreciable transitions of probability. On the other hand, if the 

perturbation is harmonic, the real contribution come from transition between the 

system and the perturbation term as a complete physical system. 

 

5 ABSORPTION AND STIMULATED EMISSION 

 

The interaction of atoms with classical fields is of fundamental importance and 

requires many complex problems in nature. However, we will consider here in this work 

just two applications of quantum perturbation theory. The first is the absorption and 

stimulated emission in hydrogen atom (in which the classical radiation hits the atom 

and causes a transition between energy levels).  

                                                           

1 We can observe clearly that 𝐇𝑛𝑖
1 |𝑛⟩ ⟺ ⟨𝑛|𝐇𝑛𝑖

1†
, i.e., the 𝐇𝑛𝑖

1 = 𝐇𝑛𝑖
1†

. Thus, |𝐇𝑛𝑖
1 |̅̅ ̅̅ ̅̅ ̅2 = |𝐇𝑛𝑖

1†|̅̅ ̅̅ ̅̅ ̅2

 and it is evident the 

symmetry between two processes. The transition rates per unit of density of states are given by 
𝓌𝑖→[𝑛]

𝜌(E𝑛)
|

E𝑛≅E𝑖−ℏ𝜔

=  
2𝜋

ℏ
|𝐇𝑛𝑖

1 |̅̅ ̅̅ ̅̅ ̅2 =
2𝜋

ℏ
|𝐇𝑛𝑖

1†|̅̅ ̅̅ ̅̅ ̅2

, =
𝓌𝑛→[𝑖]

𝜌(𝐸𝑛)
|

E𝑖≅E𝑛+ℏ𝜔
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We are in position now to apply quantum perturbation theory in interactions of 

atom with classical radiation field. Consider the Hamiltonian is given by 

𝐇 =
𝐩𝟐

2𝑚𝑒
+ 𝑒𝜙(𝐫) −

𝑒

𝑚𝑒𝑐
𝐀 ∙ 𝐩 (62) 

where 𝐩𝟐/2𝑚𝑒 + 𝑒𝜙(𝐫) is the piece of the Hamiltonian that is concerned to the atomic 

system and the term (𝑒/𝑚𝑒𝑐)𝐀 ∙ 𝐩 of that is related with the interaction between the 

electromagnetic field with the momentum of the electron. The Equation (62) is valid 

since the condition 𝛁 ∙ 𝐀 = 0.1 We can define a vector potential of a monochromatic 

electric field as 

𝐀 = 2𝐀0 cos(𝐤 ∙ 𝐫 − 𝜔𝑡) (63) 

where 𝐀0 and 𝐤 are the polarization and the wave vector of the electric field. Writing 

the vector potential in Euler notation and replacing in the Hamiltonian of the physical 

system, it results 

𝐇 =
𝐩𝟐

2𝑚𝑒
+ 𝑒𝜙(𝒙) −

𝑒

𝑚𝑒𝑐
𝐀0 ∙ 𝐩[𝑒𝑖𝐤∙𝐫𝑒−𝑖𝜔𝑡 + 𝑒−𝑖𝐤∙𝐫𝑒𝑖𝜔𝑡]. (64) 

Using the results of the harmonic perturbation obtained in section 2.3, we can 

define the last term as a perturbation, where the responsible term for the absorption is 

given by 

𝐇𝑛𝑖
1† = −

𝑒

𝑚𝑒𝑐
𝐀0 ∙ 𝐩𝑒𝑖𝐤∙𝐫|

𝑛𝑖

. (65) 

Thus, the transition rate of the absorbed energy from an electromagnetic field is 

then 

𝓌𝑖→𝑛 =
2𝜋

ℏ

𝑒2

𝑚𝑒
2𝑐2

|⟨𝑛|𝐀0 ∙ 𝐩𝑒𝑖𝐤∙𝐫 |𝑖⟩|
2

𝛿(E𝑛 − E𝑖 − ℏ𝜔) (66) 

The final states |𝑛⟩ form a discrete spectrum and due to the fact that they are 

not in ground state and the function cannot be infinitely sharp, we can verify that the 

delta-function has a natural broadening due to finite lifetime (BUTKOV, 1973).2 

Henceforth, it is possible obtain the energy cross section of the energy absorbed of the 

transition as 

𝜎abs =
Energy absorbed by the atom (i→n) per unit time

Energy flux of ratiation
 (67) 

                                                           
1 This condition is called Coulomb gauge. 
2 In general, we regard 𝛿(𝜔) as a Lorentzian function 𝛿(𝜔) = lim

𝜖→0

1

𝜋

𝜖

𝜔2+𝜖2. In this sense, applying to the case 

𝛿(𝜔 − 𝜔𝑛𝑖) = lim
𝜁→0

1

2𝜋

𝜁

(𝜔−𝜔𝑛𝑖)2+
𝜁2

4
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Dealing with classical fields, we can use the Maxwell’s field equations and 

obtain the radiation energy from these followings relations 

𝐄 = −
1

𝑐

𝑑𝐀

𝑑𝑡
= 2k𝐀𝟎 sin(𝐤 ∙ 𝐫 − 𝜔𝑡) (68) 

𝐁 = 𝛁 × 𝐀 = 2kA0𝒆𝒛 sin(𝐤 ∙ 𝐫 − 𝜔𝑡). (69) 

Thus 𝐁 and 𝐄 are mutually perpendicular and perpendicular to the wave vector 

𝒌 and they have the same amplitude as we can verify in Equations (68-69). The energy 

per unit volume is given by (Shankar, 1994) 

𝑢 =
1

2
(

𝐄2

8𝜋
+

𝐁2

8𝜋
) =

𝑘2|𝐀𝟎|2

2𝜋
. (70) 

Now, multiplying the energy per unit volume by speed of wave propagation, we 

obtain the energy flux radiation. Thus,  

𝜎𝑎𝑏𝑠 =

ℏ𝜔
2𝜋
ℏ

𝑒2

𝑚𝑒
2𝑐2 |⟨𝑛|𝐀𝟎 ∙ 𝐩𝑒𝑖𝐤∙𝐫 |𝑖⟩|

2
𝛿(E𝑛 − E𝑖 − ℏ𝜔)

𝜔2|𝐀𝟎|2

2𝜋𝑐

 (71) 

Rearranging the terms,  

𝜎𝑎𝑏𝑠 =
4𝜋2

ℏ𝜔

𝑒2

𝑚𝑒
2𝑐

|⟨𝑛|𝛆 ∙ 𝐩𝑒𝑖𝐤∙𝐫 |𝑖⟩|
2

 𝛿(𝜔𝑛𝑖 − 𝜔). (72) 

Using the electric dipole approximation to solve the above equation, we must 

verify the conditions in a proper way. Considering the wavelength of the radiation field 

larger than the atomic dimension1, we can expand the exponential and take the 

relevant term. Then 

𝜎𝑎𝑏𝑠 ≅
4𝜋2

ℏ𝜔

𝑒2

𝑚𝑒
2𝑐

|⟨𝑛|𝛆 ∙ 𝐩 |𝑖⟩|2 𝛿(𝜔𝑛𝑖 − 𝜔). (73) 

Taking the polarization direction along x-axis the wave vector in the n-direction, 

all is necessary to calculate is the matrix element of the momentum operator ⟨𝑛|𝑝x|𝑖⟩. 

Using the Ehrenfest theorem (SAKURAI, 1994), we obtain the momentum as a function 

of the commutator between space and the Hamiltonian 

[𝐫, 𝐇] = 𝑖ℏ
𝑑𝐇

𝑑p
=

𝑖ℏ𝐩

𝑚
⟹ 𝐩𝐱 = −

𝑖

ℏ
𝑚[𝒙, 𝐇]. (74) 

Calculating the matrix element of the momentum, 

                                                           
1 Taking the energy of the radiation quite similar to the characteristic energy level of the atom,  

ℏ𝜔~
𝑍𝑒2

𝑎0/𝑍
≅

𝑍𝑒2

𝑅𝑎𝑡

 

Or, 
2𝜋𝑅𝑎𝑡

𝜆
~

𝑍

137
. For small values of Z, the approximation can be done for this case, i.e., 𝑒𝑖

𝜔

𝑐
�̂�∙𝒙 ≅ 1. 



 
 

 
43 

⟨𝑛|𝐩𝐱|𝑖⟩ = −
𝑖

ℏ
𝑚⟨𝑛|[𝒙, 𝐇]|𝑖⟩ = −

𝑖

ℏ
𝑚⟨𝑛|𝐫x𝐇 − 𝐇𝐫x|𝑖⟩ = −

𝑖

ℏ
𝑚[⟨𝑛|𝒙𝐇|𝑖⟩ − ⟨𝑛|𝐇𝒙|𝑖⟩]

= −
𝑖

ℏ
𝑚[⟨𝑛|𝐫x|𝑖⟩E𝑖 − ⟨𝑛|𝐫x|𝑖⟩E𝑛] = 𝑖𝑚

(E𝑛 − E𝑖)

ℏ
⟨𝑛|𝒙|𝑖⟩. 

(75) 

After arranged the terms  

⟨𝑛|𝐩x|𝑖⟩ = 𝑖𝑚𝜔𝑛𝑖⟨𝑛|𝒙|𝑖⟩. (76) 

For the purpose to eliminate the matrix element of 𝐩x, we must evaluate the 

matrix elements of the commutator between 𝐩x and 𝐱. Opening the commutation 

relation and inserting the unit operator in the coordinate basis,  

⟨𝑛|[𝐩x, 𝒙]|𝑖⟩ = ⟨𝑛|𝐩x𝒙|𝑖⟩ − ⟨𝑛|𝒙𝐩x|𝑖⟩ = ⟨𝑛|𝐩x (∑|𝑙⟩⟨𝑙|

𝑗

) 𝒙|𝑖⟩ − ⟨𝑛|𝒙 (∑|𝑙⟩⟨𝑙|

𝑗

) 𝐩x|𝑖⟩

= ∑⟨𝑛|𝐩x|𝑙⟩⟨𝑙|𝒙|𝑖⟩

𝑙

− ∑⟨𝑛|𝒙|𝑙⟩⟨𝑙|𝐩x|𝑖⟩

𝑙

 

(77) 

Using the result of Equation (76) and replace it in Equation (77), we have 

⟨𝑛|[𝐩x, 𝒙]|𝑖⟩ = 𝑖𝑚 (∑ 𝜔𝑛𝑗⟨𝑛|𝒙|𝑙⟩⟨𝑙|𝒙|𝑖⟩

𝑙

− ∑ 𝜔𝑘𝑖⟨𝑛|𝒙|𝑙⟩⟨𝑙|𝒙|𝑖⟩

𝑙

) (78) 

Doing 𝑛 = 𝑖, finally we get 

⟨𝑖|[𝐩x, 𝒙]|𝑖⟩ = 2𝑚𝑖 ∑ 𝜔𝑖𝑙|⟨𝑙|𝐱|𝑖⟩|2

𝑙

. (79) 

Employing the canonical relations (COHEN-TANNOUGJI, et al., 

1977),[𝐩
i
, 𝐫j] = −𝑖ℏ𝛿𝑖𝑗 and noticing that 𝑙 is a mute variable,  

𝑖ℏ = 𝑖ℏ (
2𝑚

ℏ
∑ 𝜔𝑛𝑖|⟨𝑛|𝒙|𝑖⟩|2

𝑛

). (80) 

That implicates the term in parenthesis must be equal to unit, i.e.,  

∑ 𝑓𝑛𝑖

𝑛

=
2𝑚

ℏ
∑ 𝜔𝑛𝑖|⟨𝑛|𝒙|𝑖⟩|2

𝑛

= 1 (81) 

where is defined here as oscillator strength for quantum transitions between the states 

from |𝑖⟩ to |𝑛⟩. Substituting the result of Equation (76) into Equation (73), we have 

𝜎𝑎𝑏𝑠(𝜔) ≅ 4𝜋2𝛼𝜔𝑛𝑖|⟨𝑛|𝒙|𝑖⟩|2 𝛿(𝜔𝑛𝑖 − 𝜔). (82) 

The cross section of the absorbed energy represented here is a function of the 

angular frequency and exhibits a sharp delta-function-like peak whenever the energy 

absorbed is close to the energy level spacing. Summing over the angular frequencies 

and identifying the strength oscillator,  
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∫ 𝜎𝑎𝑏𝑠(𝜔)𝑑𝜔 ≅
2𝜋2𝛼ℏ

𝑚
(∑

2𝑚

ℏ
𝜔𝑛𝑖|⟨𝑛|𝒙|𝑖⟩|2

𝑛

) =
2𝜋2𝛼ℏ

𝑚𝑒
= 2𝜋2𝑐 (

𝑒2

𝑚𝑒𝑐2) (83) 

By quantum perturbation theory, it has been possible to estimate the cross 

section of the absorbed energy from a classical radiation using the first-order 

perturbation and demonstrate that this is a classical result and it is also remarkable, 

once it was not necessary to explicit the Hamiltonian of the physical system. 

 

CONCLUSION  

In this work, we have introduced the basic concepts of quantum perturbation 

theory and its application in the absorption and stimulated emission. Using concepts 

of quantum mechanics and evaluating the transition of probabilities of physical 

systems, we could obtain very important results such as the rate of transition 

probabilities when a hydrogen atom is excited by a classical radiation. 
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