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ABSTRACT 

The purpose of this work is simply to present the thermodynamic theory of the 

structural phase transition in solids. Second-order phase transition will be described in 

detail as well as the evaluation of entropy and the specific heat of a physical system 

when undergoing a structural transition. It was found that lowering the temperature 

from higher temperature (above Curie temperature) the entropy decreases 

continuously, indicating a decreasing of number of accessible states in this specific 

thermal condition and structure rearrangement. The specific heat pC  has showed to be 

discontinuously in CT  and increase linearly with temperature. 
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INTRODUCTION 

The classical thermodynamic deals mainly with the macroscopic behaviour of 

the materials. There are relations among physical properties that are established by 

some thermodynamic laws. In order to understand better the phase transition 

phenomena and the related effects, it is necessary to employ the concept of free 

energy, such as thermodynamics functions and potentials, e.g., Gibbs and Helmholtz 

free energy (LANDAU; LIFSHITZ, 1980). The basic principle is, considering a given 

specific system with determined number of possible accessible states, the system will 

tend to occupy the states whose energies are minimum if the internal energy 𝑈 is as 

low as possible and the entropy is as high as possible. In the next topic will be 
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presented some relevant physical concepts that are fundamental to describe the 

phenomenological theory of structural and its consequence ferroelectric phase 

transitions. 

 

1 ENTROPY AND ENERGY DISTRIBUTION BETWEEN NON-STOCHASTIC 

SYSTEMS 

Consider an isolated system A, whose number of accessible states is i and 

these states are related to some constrain. Suppose in moment 't , the constrain 

associated to the system is removed so the system may access or may not access 

non accessible states up to the time of restriction removal. In this way, the number of 

accessible states for t > 't is greater or equal than the number of possible states for t < 

't . This means that 
if  , in which f is the number of possible states after the 

constrain removal of the system A, and the probability of occurrence of initial states is 

given by
fiiP  /)( . In a structural phase transition of solids, the system undergoes 

to a changing of its structural arrangement and energy that can be associated to the 

changing of possible states of the system in a phase transition. 

Suppose there are two systems, A and 'A , and the number of possible states of 

the system A is given by )(E , where the energy of the system A is between E and

EE  . Similarly, for the system 'A , we have the number of possible states )'(' E with 

energy between 'E and '' EE  . Suppose that both systems are not isolated between 

them, being able to exchange energy each other. However, the combined system 

given by '0 AAA   is hermetic and isolated, maintaining constant the total energy, 

i.e., '0 EEE  . Though the total energy is constant, the energies 𝐸 and 𝐸′ are not 

fixed. Somehow, because the systems are interacting each other, the Hamiltonian of 

the combined system must have terms of the both isolated systems and one interaction 

term. Therefore, the total Hamiltonian of the system 0A  is int'0 HHHH  . Worthy 

to notice that intH can not be null, since this term is responsible for explaining the 

interaction between the two systems. Thus, we have to consider that the interaction 

term is much smaller than the sum of the Hamiltonian of the two systems, i.e., intH ≪

'HH   and intH  is associated as a perturbation of the combined system 0A . 

The probability of finding the combined system in a state that has energy E for 

the system A is proportional to the number of possible states with energy between E 
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and EE  and is also proportional to the number of possible states of the system 'A

with energy EE 0 , since the system 0A  is a restricted system. As the states are 

independent, we can infer that the number of possible states of the combined system 

is given by )'(')()(0 EEE   and, consequently, the probability )(EP is given by

)'(')()()( 0 EECECEP  whereC is a constant of normalization.  

To find the position of maximum probability, or equivalently the position of 

maximum of its logarithm, we also need to find the value of most probable energy. 

Therefore, differentiating the logarithm of )(EP with respect to E and equating to zero, 

we have Equation (1) given by 

0
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where we used the fact that as the derivative is with respect to 𝐸, it follows that 

𝑑𝐸 = −𝑑𝐸′, from 𝐸 = 𝐸0 − 𝐸′. Denoting
dE

Ed
E

)(ln
)

~
(


 , follows that )'

~
()

~
( EE   where

E
~

and '
~
E are the energies of the system 𝐴 and 𝐴′ in the maximum of probability. By 

definition, we have that   has units reciprocal to that of energy. It is convenient 

introduce the quantity 1 kT , in which k is a constant (Boltzmann constant) with 

units of energy per units of temperature in absolute scale (Kelvin). Thus, follows that 

and calling )(ln EkS  , where S here is defined as entropy, in a differential form we 

have that 1/ dETdS . Somehow, the condition of maximum probability )
~

(EP is 

expressed as a condition in which the total entropy of the combined system is 

maximum. This can be expressed by Equation (2) 

0][0 '

'

'

 SS
dE

d

dE

dS

dE

dS
 (2) 

Summarily, we observed that in a combined system composed by two systems 

that interact thermally with each other will reach the equilibrium when the total entropy 

of the system is maximum. This result is rather important to investigate the phase 

transition in systems due to the fact that systems with symmetric structures pass 

through a critical point and undergoes structural distortions, changing the accessible 

states of the perturbed system and altering the entropy of the material (LANDAU; 

LIFSHITZ, 1980).  
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2. STRUCTURAL PHASE TRANSITION OF SECOND ORDER AND CRITICAL 

PHENOMENA 

 

Structural phase transitions (SPT) in crystals between high-symmetry, 

disordered and low-symmetry or ordered phases have been of much interest of both 

experimentalist and theoreticians for a time long (SCOTT, 1974). The transition 

between different modifications of solids is generally affected through a phase 

transition in which there is a sudden ordering of the crystalline lattice and the material 

state changes discontinuously. Another type of phase transition in which there is no 

sudden changing of the lattice, but involving just a change of symmetry, called second-

order phase transition (PROYKOVA, et al., 1999). Second order phase transitions 

occur when a new state of reduced symmetry develops discontinuously from 

disordered phase at high temperature to ordered phase at low temperature 

(HOHENBERG; KREKHOV, 2015).  

Barium titanate (BaTiO3) (LETTERS, 1945; HARWOOD; POPPER; RUSHMAN, 

1947) is a ferroelectric material that undergoes a phase transition from a symmetric 

cubic structure at high temperature to a non-symmetric structure as the temperature is 

lowering, giving the appearance of the ferroelectric state near Curie temperature 

(MEYERHOFER, 1958). This structural changing undergone by the crystal is 

performed in a continuously way, from a cubic symmetry to a less-symmetric tetragonal 

structure, resulting in a continuous structural modification previously denoted as a 

second-order phase transition.  

The breaking symmetry changes abruptly, i.e., discontinuously in the transition 

point. In any time, it is possible to conclude about the phase that material is found if 

the structural transition is of first-order. However, while at transition point in first-order 

transition a material is found in different equilibrium phase states, in a second-order 

transition the states of both phases are the same (LANDAU; LIFSHITZ, 1980).  

Changing in symmetry of a material occurs by atom displacements and, in the 

transition point, symmetry changings lead to rearrangements in crystal lattice. In order 

to describe in a quantitatively way the structural transformation in solids when 

submitted to a second-order phase transition, it is convenient to use an order 

parameter  . The order parameter  can assume positive and negative values for 

asymmetric phases and null value for symmetric ones. In a specific symmetric 
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condition of a crystalline lattice, a changing from the atom positions leads to a breaking 

symmetry that is represented by . The dependence of the order parameter with 

temperature can be seen in Figure 1(a) for second-order transition, 1(b) for second-

order transition near first transition and 1(c) for first-order transition. 

 

Figure 1: Dependence of order parameter on temperature near phase transition. (a) 

Second-order transition, (b) second-order transition near a first-order transition and (c) first-order 

transition. 

 

It is appropriate to bring an example of a breaking symmetry using a bi-

dimensional model of a diatomic rhombic crystalline lattice in a symmetric phase. In 

this lattice, an atom A is fixed in the corners while other atom B is centred between 

four atoms A. The group of points of the symmetric structure includes the following 

symmetry operations: 1,1,1 m  and 
2m where 1and 1  are the identity operator and the 

inversion center, and 
1m  and 

2m are the reflection symmetry operations with respect 

the axis of the bi-dimensional coordinates (MANDULA; ZWEIG; GOVAERTS, 1983). 

The relative atom displacement that leads a breaking symmetry can be thought as a 

changing of the B atom in the direction 
1a , arising a non-null   and remaining only the 

1 and 2m symmetry operations. 

The order parameter  can show different sort of dependence on temperature 

in the transition regions. In a second-order transition,  presents a continuous 

dependence on temperature, while in the first-order an abruptly behavior is observed 

(Fig.1). It is rather important to notice that the continuous features of a second-order 

phase transition results in a continuous characteristic of the thermodynamic functions, 

such as entropy, energy, volume, pressure, etc. Fig. 1b shows the sudden behavior of 

 with CT , presenting a dependence on temperature in the non-symmetric phase with 
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0 . This transition could be a second-order transition if physical parameters as 

pressure or external field were variable. The main characteristic of this second-order 

transition is that in the transition point the atoms shift from the original position resulting 

in a changing of symmetry, being generally called of phase transition of displacement 

type. 

 

Figure 2: Potential barrier of a solid with respect to the order parameter. 

 

On the other hand, the breaking symmetry can be thought as local probability 

redistribution of finding atoms in different equilibrium positions in the unit cell. 

Obviously, when the crystal in a symmetric phase 0 and consequently, the 

probability of finding an atom in its original position is maximum. Undergoing a 

transition from non-symmetric to symmetric phase, the atomic displacements lead to 

probability redistribution of finding the atoms in a specific position in the crystalline 

lattice. To energies 0U ≪ kT , the atoms have energy to surpass the potential barrier 

of the non-symmetric phase (See Figure 2). Here, both 0  and 0  equally 

probable. With decreasing the temperature and when the system has kTU  0 , the 

phase transition manifest itself as the appearance of probability redistribution of finding 

the atoms in a specific position in which 0   and 0  . In the transition point, this 

difference is given by 
21

21









  in which 

1 and 2  are the probability density of finding 

the atoms of different types in any point of the crystalline lattice. This transition is 

denoted as order-disorder type and there is no relevant difference between this type 

of transition and the displacement type. In symmetrical point of view, there is no 

distinction between them. 
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In STP there is not absorption neither emission of heat, i.e., there is no latent 

heat of phase transformation. However, there are physical quantities that are not 

changed continuously, being derived from thermodynamic functions, such as specific 

heat, calorific capacity, coefficient of thermal expansion, compressibility, etc., being 

discontinuous in the phase transition point (LANDAU; LIFSHITZ, 1980).  

 

3. THE SPECIFIC HEAT DISCONTINUITY 

 

A second-order phase transition is manifest by a discontinuity of the second 

derivative of the free energy at the transition temperature CT (Curie temperature) and 

one of the most important features is also the specific heat discontinuity (LANDAU; 

LIFSHITZ, 1980; KRASNYTSKA, et al., 2015). A quantitative theory of the second-

order phase transition is based on thermodynamic quantities associated to the specific 

values of . We can represent any solid by the thermodynamic potential as a function 

of carried on pressure p, temperature T, and the order parameter , i.e., ),,( Tp . 

Only p and T can be arbitrarily specified while the order parameter will depend on the 

equilibrium thermal conditions in which the thermodynamic potential ),,( Tp is 

minimum. 

In the vicinity of CTT ~ is expected that is so closed to the symmetric phase as 

the non-symmetric one and because there is no abruptly change in the symmetry in a 

second-order transition, we can infer that 0 . It is convenient to expand the 

thermodynamic potential ),,( Tp around 0 , is given by the Equation (3), 

)(),(),,( 432

0   CBATpTp  (3) 

where the coefficients α, A, B, and C are functions of p and T and )( is the 

term representing higher orders. Taking into account that 0 and 0  are related 

to different phase symmetries the Hamiltonian of the system can not be changed by a 

simple symmetry operation. As a result, not all terms of the expansion in Eq. (3) are 

maintained and the potential shall satisfy the condition ),,(),,( * TpTp  where 

* is an operation symmetries, causing the odd terms to be null.  

The coefficient A is easily seen to vanish to zero since at the transition point 

0)0(   . For 0  at the transition point, we shall have )0()0(   , with 








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0),( CC TpA . The minimum of ),,( Tp for 0 can be obtained by differentiating 

Eq. 3 with respect to  , that results in Equation (4) 












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
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




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ABA
TpTp

2

0

042
),,(),,(

2
30













. (4) 

For 0 it is also a solution of minimum of the thermodynamic potential in the 

symmetric phase. However, only in case of A < 0,   will have two real possible 

solutions in which ),,( Tp is minimum. The form of the thermodynamic potential 

relative to the A signal is presented in Fig. 3. 

 

Figure 3: Dependence of ),,( Tp on signal of A. 

 

Rearranging Eq. 3 accordingly to the considerations, the potential has the 

following form
42

0 ),(),,(  CATpTp  where C > 0. As we can observe in 

Figure 3, the transitions points are determined by 0),( TpA . As ),( TpA changes its 

signal when go through a phase transition, we notice that ),( TpA is continuous and we 

can expand it as a function of temperature, i.e., ))((),( CTTpaTpA  . Replacing the 

latter term in Eq. 3, we have that  

42

0 ))((),(),,(  CTTpaTpTp C   (5) 

with C(p) > 0. Taking advantage of Eq. (4) with the respective replacement of 

A, we can find the dependence of the order parameter on temperature near transition 

( CTT  ) in non-symmetric phase. Then, we have in Equation (6) 

04))((2
),,( 3

00 








BTTpa

Tp
C . (6) 
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where a(p) < 0 for 0 . The solutions of Equation (6) including 00   are given 

by Equation (7), 

2/1

0
2

))((







 


C

TTpa C . (7)* 

In order to study the specific heat discontinuity, it is necessary to present its 

relation with thermodynamic potential of a system and the macroscopic 

thermodynamic variables that represents a specific physical state. It has been shown 

previously that in a quasi-static infinitesimal process a system is found to increase its 

total entropy accordingly to relation TdEdS /1/  where E is the total energy of a 

system. The total energy dE can be split in internal energy dU and the infinitesimal 

work done by the system at constant pressure p, given by pdV. In this way, we have 

that dU = TdS - pdV. 

In a real experiment with solids that present structural phase transitions 

generally the thermodynamic variables that are more easily controlled are the 

temperature and pressure. Therefore, it is convenient to express the internal energy 

dU as a function of controlled-variables. As and we have that in Equation (8) 

SdTSTdTdSTdSSdTSTd  )()(  

VdppVdpdVVdppdVpVd  )()( . 
(8) 

Replacing the results of Equation (8) in dU = TdS - pdV, it is quite appropriate 

recognize the thermodynamic potential, known as Gibbs free energy, that is giben by 

Equation (9) 

),()()( TpdVdpSdTpVdSTddU  . (9) 

To find the entropy of the system simply differentiate the Gibbs free energy with 

respect to temperature, maintaining the pressure constant, i.e.,   ST p  / . 

Consequently, we have that  

    22

:0

2

:0:: 22   pTCCpTpTpT TTaSSTTa  (10) 

where  pT : and 0:  pT are S and 0S , respectively. As  pTpT :

2

: 2  , 

finally we have that   2

:0 22   pTCTTaSS . Worthy to notice as the system is 

in equilibrium the derivate of the Gibbs free energy with respect to order parameter 

                                                           
* It is Worthy to mention that the value of 00   in the symmetric phase is not a value of minimum of the 

thermodynamic potential, but a value of maximum.  
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has to be zero, i.e., 0 and this implicates that the term containing the temperature 

derivative of   is zero, because 0:  TpT   and necessarily ST  0 . 

Finally, the total entropy of the system is given by 
2

0 2 aSS  . In the symmetrical 

phase, 0SS  ; in the unsymmetrical phase, the entropy is given by Equation (11), 

C

TT
aSaSS C )(

2 2

0

2

0


  . (11) 

At the transition point itself, this expression becomes 0SS  and the entropy is 

therefore continuous, as it should be (LANDAU; LIFSHITZ, 1980). 

Finally, the specific heat discontinuity can be verified, at pressure maintained 

constant, using that )()/( : STTSTC pTpp  . Differentiating Eq. 11 with respect to 

T, we have CTaCC pp /2

0  . Consequently, we can observe a discontinuity in the 

specific heat when the temperature is near CT , because CTaCTC CpCp /)( 2

0  . Since 

the value of C is positive, the specific heat is increased at the transition point, and for 

the symmetrical phase, 0SS   and 0pp CC  . Other physical quantities are also 

discontinuous at the phase transition point, such as specific heat at a constant volume.  

 

CONCLUSION  

 

The main purpose of this work was to describe theoretically the structural phase 

transition in solids using the thermodynamic approach. It was shown that a phase 

transition is accompanied by a symmetry breaking when the temperature decreases 

from above the Curie temperature. It was presented the order parameter can assume 

two values in which the Gibbs free energy is minimum, indicating a position of 

unsymmetrical phase is also an equilibrium condition when the system undergoes a 

phase transition. Moreover, it was found that in a particular system under a quasi-static 

process, the entropy is always as maximum as possible, and consequently, the entropy 

in a structural second-order transition is always continuously growing with temperature 

while the specific heat has a discontinuity near the Curie temperature. 
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