Study of the impact of different interdisciplinary thematic approaches through mathematical modelling: the case of nanoscience and nanotechnology

Conteúdo do artigo principal

Driely Gomes Santos
Carmem Silvia Rodrigues Paschoal Sanches, Carme Sanches
Milena Aparecida Batelo Ramos
Michael de Melo

Resumo

This work has a great and substantial importance in the framework that the country is engaged when the issue is concerned about basic education system. Analyze distinct perceptions due different interdisciplinary thematic approaches in classrooms of basic education might result in different results in the teaching and learning process using mathematical modelling. Nanoscience and nanotechnology has been chosen as a theme with a wide interdisciplinarity, constituting one of the most important themes to generate discussion in classroom. This study will present the effects of the student perceptions and its relatable mathematical modelling results for different two education levels: Fundamental II and High School. One believes that interdisciplinary is a main methodological tool to defragment the knowledge, contributing with mathematical concept learning. Nevertheless, it is widely accepted that the way an interdisciplinary theme is presented in a classroom can significantly alter the efficiency of the employability of interdisciplinary methods and, consequently result in teaching learning process failures. 

Detalhes do artigo

Seção
EXATAS E TECNOLÓGICAS
Biografia do Autor

Carmem Silvia Rodrigues Paschoal Sanches, Carme Sanches, Unifev

Carmem Sanches is graduated in Mathematics with master in education from UNIMEP.

Milena Aparecida Batelo Ramos, Unifev

Milena Ramos is graduated in Mathematics and master in Applied Mathematics from UNESP-IBILCE.

Michael de Melo, Unifev

Michael Melo is Bachelor in Physics from USP, master in Civil Engineering at UNESP and PhD aspirant at UNESP at Applied Physics.

Referências

BASSANEZI, R. (1994). Modelagem matemática: uma disciplina emergente nos programas de formação de professores. In R.

Bassanezi, Modelagem matemática: uma disciplina emergente nos programas de formação de professores. Blumenau: Dymanis.

BLUM, W., & FERRI, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), pp. 45-58.

BRASIL. (2013). MEC. Retrieved apr 04, 2016, from Portal MEC: http://portal.mec.gov.br/pnld/195-secretarias-112877938/seb-educacao-basica-2007048997/12640-parametros-curriculares-nacionais-1o-a-4o-series

CHAVES, A. (2015). Master Dissertation. O ensino da matemática e os tipos de contextos. São Paulo, Brazil: Pontifície Universidade Católica de São Paulo.

D'AMBRÓSIO, U. (1986). Da realidade à ação: reflexões sobre a educação matemática. (5ª ed.). Sao Paulo: Summus.

ENGLISH, L. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM Mathematics Education, 41, pp. 161-181.

FRIGG, R. (2006). Scientific Representation and the Semantic View of Theories. Theoria, 55, pp. 49-65.

FRISON, M. D. (2012). Interdisciplinaridade no âmbito escolar. Seminário de Pesquisa em Educação da Região Sul - IX ANPED.

LAKATOS, I. (1970). Hystory of Science and its rational reconstructions. Boston studies in the Philosophy of Science, 91-136.

NATIONAL NANOTECHNOLOGY INITIATIVE. (2017, 05 20). Nano.gov. Retrieved from National Nanotechonolgy Initiative: https://www.nano.gov/nanotech-101/what/nano-size

SILVA, L., FERREIRA, L., & MOREIRA, F. (2010). Modelagem matemática: reflexões teóricas e aplicações. Retrieved may 14, 2016, from http://www.ufjf.br: http://www.ufjf.br/emem/files/2015/10/MODELAGEM-MATEM%C3%81TICA-REFLEX%C3%95ES-TE%C3%93RICAS-E-APLICA%C3%87%C3%95ES.pdf

Sodré, U. (2007). Class notes (Mathematics) - UEL. Modelos matemáticos. Londrina, PR.